Questions on Thermal Energy MS

1. Equation

```
Recall of \(p V=n R T\)

\section*{Moles of air}

Estimate of temperature \(\approx 20{ }^{\circ} \mathrm{C}\) [Range \(\left.0-39\right]\) (1)
Use of equation, including conversion of temperature to K AND sensible volume (1)
Evaluation: \(n=p V / R T=1.0 \times 10^{5} \mathrm{~Pa} \times 20 \times 10^{-6} \mathrm{~m}^{3} / 8.31 \times 293\)
\(=8 \times 10^{-4} \mathbf{( 1 )}\)
Volume of bubble
( \(V \propto T\) since \(p\) and \(n\) constant) (1)
so volume smaller (1)
2. Temperature of fire

Heat lost by stone = heat gained by water
\(\operatorname{OR}(m c \Delta \theta)_{\text {stone }}=(m c \Delta \theta)_{\text {water }} \mathbf{( 1 )}\)
\(198 \mathrm{~kg} \times 1100 \mathrm{~J} \mathrm{~kg}^{-1}{ }^{\circ} \mathrm{C}^{-1} \times \Delta \theta\)
\(=513 \mathrm{~kg} \times 4200 \mathrm{~J} \mathrm{~kg}^{-1}{ }^{\circ} \mathrm{C}^{-1}\)
\(\times\left(100{ }^{\circ} \mathrm{C}-18{ }^{\circ} \mathrm{C}\right)\) [i.e. \(\Delta E\) for water] (1)
\(\Delta \theta=810^{\circ} \mathrm{C}\) (1)
\(\theta=910^{\circ} \mathrm{C}\) (1)
Why temperature of fire higher than calculated
Energy from stones greater than calculated/stones are hotter than (1) this at the start (since heat to surroundings)
+ additional detail, e.g.
Heat lost by stones while transferred/stones not heated through effective \(m\) smaller/ last stone probably provided more than enough (1) energy for final increase/some heat lost by water
3. Calculation of energy to heat water
\(\Delta E=m c \Delta \theta\)
\(=0.2 \mathrm{~kg} \times 4200 \mathrm{~J} \mathrm{~kg} . \mathrm{-}^{\circ} \mathrm{C}^{-1} \mathbf{( 1 )}\)
\[
\times\left(75^{\circ} \mathrm{C}-22^{\circ} \mathrm{C}\right)(\mathbf{1})
\]
[i.e. subst \(m c\) (1) subst \(\Delta \theta\) (1)]
\(=44500 \mathrm{~J}\) (1)
Calculation of maximum thermal energy from heater
\(\Delta E=P \Delta t\)
OR \(\Delta E=2500 \mathrm{~W} \times 6 \mathrm{~s}(\mathbf{1})\)
15000 J (1)
Explanation of which suggestion) most likely to be correct
Reservoir, as heater supplies insufficient energy in 6 s [ecf] (1)

\section*{Effect of heat losses}

More energy would be required (1) 1
4. Diagram:
\[
F \uparrow(\mathbf{1})
\]
mg or \(\mathrm{W} \downarrow\) (1) 2
Excess pressure:
\[
\begin{aligned}
& P=m g / A \mathbf{( 1 )} \\
& =0.12 \times 9.81 / \pi \times\left(9 \times 10^{-3}\right)^{2} \mathbf{( 1 )} \\
& =4.6 \mathrm{kPa} \mathbf{( \mathbf { 1 } )}
\end{aligned}
\]
\[
3
\]

Estimates and calculation:
Volume of gas \(\approx\) between 0.1 and 2 litre \(\left(0.1-2 \times 10^{-3} \mathrm{~m}^{-3}\right)(\mathbf{1})\)
Temperature of gas \(\approx 0^{\circ}-25^{\circ} \mathrm{C}\) (1)
\(P V=n R T\) OR \(n=P V / R T\) [Allow e.c.f. from wrong estimates] (1)
\(=104.6\) (1)
\(\times 10^{3} \times V_{\text {gas }} 8.31 \times\left(\mathrm{T}_{\text {gas }}+273\right)(\mathbf{1})\)
0.008 - 0.14 (1)
[Significant figure penalty for \(>2\) significant figures] Max5```

